Bone Grafts Prepared with Selective Cell Retention Technology Heal Canine Segmental Defects as Effectively as Autograft

Darrel Brodke,1 Hugo A. Pedrozo,2 Terri A. Kapur,3 Mohamed Attawia,3 Karl H. Kraus,4 Chantal E. Holy,3 Sudha Kadiyala,2 Scott P. Bruder3,5

1Department of Orthopedics, University of Utah, Salt Lake City, Utah
2DePuy Inc, Warsaw, Indiana
3DePuy Spine Inc., Raynham, Massachusetts
4Tufts University School of Veterinary Medicine, North Grafton, Massachusetts
5Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio

Received 19 January 2005; accepted 9 September 2005
Published online 6 April 2006 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jor.20094

ABSTRACT: Using a canine critical-size segmental defect model, a two-phased study was undertaken to evaluate the healing efficacy of demineralized bone and cancellous chips (DBM-CC) enriched with osteoprogenitor cells using a Selective Cell Retention (SCR) technology. The goals of this study were: 1) to determine the bone-healing efficacy of SCR-enriched grafts versus autograft, and 2) to assess the value of clotting SCR-enriched grafts with platelet-rich plasma (PRP). Thirty dogs were included in Phase I: 18 dogs were treated with an SCR-enriched DBM-CC graft clotted with autologous bone marrow, and were compared to 12 autograft controls. In Phase II, 24 animals were divided into 4 groups of 6 animals, each treated with a different bone graft material: 1) iliac crest autograft, 2) DBM-CC alone, 3) DBM-CC saturated with marrow, and 4) SCR-enriched DBM-CC clotted with PRP. All grafts were placed unilaterally in a 21-mm long osteoperiosteal femoral, instrumented, critical-size defect. Radiographs were obtained for all animals postoperatively and every 4–16 weeks; animals were then sacrificed. All femurs were prepared for histology. Femurs in the Phase II study were also analyzed by micro-CT. At 16 weeks, healing—defined by bridging bone across the defects—was observed in 50% of the DBM-CC alone group and 67% of the DBM-CC saturated with marrow group; 100% of the autograft and SCR-enriched DBM-CC groups were healed. Histologically, grafts clotted with PRP showed more mature bone than those implanted with autologous bone, which in turn were similar to those implanted with bone marrow clotted SCR-enriched grafts. These results demonstrated that: 1) SCR-enriched DBM-CC was equivalent to autograft to repair critical-size defects, and 2) while not statistically significant, PRP may have accelerated bone maturation when used to clot osteoprogenitor-enriched DBM-CC grafts—as compared to cell-enriched, DBM-CC grafts without PRP—in large animal models. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:857–866, 2006

Keywords: osteoprogenitor cells; bone; critical-size defect; cell concentration

INTRODUCTION

Open surgical harvesting of autologous bone graft from the ilium is associated with significant postoperative morbidity.1,2 Consequently, a concerted research and development effort is underway to evaluate alternative graft materials that obviate the requirement for harvesting autologous bone. A composite substrate mimicking the native characteristics and constituents of autologous bone may provide the most promising alternative graft material to harvested autograft. Specifically, autologous bone marrow has considerable appeal from a bone grafting standpoint because it provides live osteogenic cells and has the ability to effect de novo bone formation directly at the graft site.3,4 More recently, the concept of grafting bone marrow-augmented composites has been refined with focus on concentrating the potent osteogenic precursor cells found in marrow and creating grafts with high concentrations of those specific cells. A novel Selective Cell Retention (SCR) method was developed as a result of these endeavors to enrich graft materials with osteoprogenitors.5,6